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This study presents a novel, low-cost, all-inorganic lead selenide-titania (PbSe/TiO2) nanowire 
heterostructure material synthesis for photovoltaic applications.  PbSe nanorods (NRs) have been 
co-electrospun within a TiO2 nanotube with high connectivity for highly efficient charge carrier 
flow and electron-hole pair separation.  This material has been characterized by Transmission 
Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDX), and Photovoltaic 
testing.  

Introduction 
 Co-electrospinning is a quick, simple, way 
to produce nanowires that can be easily 
controlled and modified.  Control of this 
process depends on many factors, including 
formation of the Taylor cone (or coaxial jet) 
due to the electrostatic attraction overcoming 
the surface tension of the solvent, stretching of 
this co-axial jet, preventing clogging and 
breakup of the jet, inducing a high-voltage 
surface charge on a conducting polymer 
solution [1], the distance between the 
spinneret tip and the collector, as well as, the 
type of collection method [2].  Modification 
and manipulation of these parameters allows 
control over the nanowire inner and outer 
diameter, wall thickness, and alignment [2, 3].  
Electrospun nanowires have applications in 
such fields as nanoelectronics [4, 5], 
photovoltaics [6], bio-molecule encapsulation 
[7], microfluidics[1, 8], as well as being 
possible candidates for hydrogen storage, 
tissue engineering scaffolds, and drug delivery 
systems [9].  

 
The core material of these nanowires is 

the narrow-band-gap IV-VI semiconducting 
lead selenide (PbSe) nanowires which have 
shown particularly interesting photovoltaic 
properties due to their highly efficient multi-

exciton generation (MEG) processes [10-15].  
Schaller et al. has reported an extraction of up 
to 7 excitons/photon absorbed, which 
corresponds to a 700% external quantum 
efficiency [16].  This advanced extraction 
could greatly improve the photo-conversion 
and efficiency in quantum solar cells.  Lead 
selenide has access to a much wider range of 
the electromagnetic spectrum than most 
organic dyes and other semiconducting 
nanostructures, due to its easily tunable 
bandgap [17].  PbSe, with a bulk bandgap (Eg) 
of about 0.27eV, has been found to absorb 
photons and exhibit multi-exciton generation 
strongly in the infrared region, and well into 
the visible region.  The cutoff for multi-
exciton generation depends on many factors, 
including: the crystallinity of the nanocrystals, 
the size of the nanocrystals, electron-hole 
Coulomb interactions, the exciton-Bohr radius 
of the particular nanocrystal, charge-carrier 
separation, electron-hole recombination 
(Auger recombination, which begins to 
compete with MEG at about 3Eg, λ= 1531 
nm), electron-phonon relaxation rates (crystal 
lattice vibrations), and alignment of the 
nanocrystals’ structure.   

 
The sheath material of these co-

electrospun nanowires is titanium dioxide 
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(titania-TiO2), which is widely used in 
photovoltaic materials [18-21].  Wide band-
gap TiO2 has exhibited strong charge-carrier 
separation [18], semiconducting properties 
[22], a low reflectance [23], and absorbance in 
the ultraviolet region ranging into the visible 
region [18, 19].  Titania is the ejected electron 
accepter and its uni-axial tube-like structure 
makes it a fine candidate for charge flow. 
 

These core/sheath PbSe/TiO2 
nanowires have many advantages over hybrid 
organic-inorganic dye-sensitized solar (DSSC 
or Grätzel) cells including their resistance to 
photobleaching, their thermal stability, and 
their general robustness - being entirely 
inorganic.  As stated before, these core/sheath 
nanowires will exhibit an increased efficiency 
over DSSC’s, due to their MEG and access to 
a much wider range of the electromagnetic 
spectrum than organic dyes because of their 
easily tunable bandgap (controlled by particle 
size).  The presented nanocomposite will have 
a high charge carrier separation (electron 
ejecting) due to the quantum size effects and 
strong confinement, and the slightly higher 
conductance band of lead selenide compared 
to titania.  It will also exhibit a high surface-
area to volume ratio for maximum loading of 
lead selenide on the titania’s inner surface.  
This, along with efficient absorbance through 
the ultraviolet, visible, and infrared 
electromagnetic spectrum make this technique 
a novel and scalable synthesis for a novel 
PbSe/TiO2 photovoltaic material via use of a 
solvothermal route for the stacked PbSe 
nanorods, which are then co-electrospun 
within a titania nanotube. 
 
2. Experiments 
2.1. Chemicals 

Tri-n-octylphosphine (TOP), selenium 
powder, lead acetate trihydrate, oleic acid, n-
tetradecylphosphonic acid, and diphenyl ether 
were purchased from Sigma-Aldrich for the 
synthesis of the lead selenide nanowire 

structures.  Titanium iso-propoxide (TIP), 
absolute ethanol, acetic acid (AA), and 
poly(vinyl pyrrolidone) (PVP,) were 
purchased for electrospinning through Sigma-
Aldrich.   
 
2.2 Core and Sheath Solutions Preparation 
2.2.1 Core- PbSe NWs 

All syntheses were done under dry 
nitrogen.  The synthesis of the PbSe nanorods 
followed an existing synthesis route [24] with 
a few minor modifications.  A 1.0 M stock 
solution of TOPSe was prepared by adding 
7.86 g of selenium to 100 mL of TOP and 
mixing for 2 hours at 50o C.  Lead oleate was 
formed in-situ by mixing 0.76 g of lead 
acetate trihydrate with 2 mL of oleic acid in 
10 mL diphenyl ether and heating for 30 
minutes at 150o C for 30 minutes under 
nitrogen flow via a bubbler.  The lead oleate 
solution was then cooled to 60o C and 4 mL of 
TOPSe is added to this solution.  This solution 
is referred to as the lead oleate-TOPSe 
solution.   

 
In a separate jar, 0.2 g of n-

tetradecylphosphonic acid is added to 15 mL 
of diphenyl ether and this solution is heated to 
250o C with vigorous stirring.  The lead 
oleate-TOPSe solution is added to the solution 
of n-tetradecylphosphonic acid in diphenyl 
ether.  The final solution is heated for 50 
seconds at 250o C and then cooled to room 
temperature.  While the solution cools down, 
the solution turns cloudy, indicating the 
formation of the PbSe nanorods.  Finally, 31 
mL of hexane is added to this solution.  The 
PbSe nanorods can be centrifuged and re-
suspended in different solvents such as 
chloroform, water, and THF.  They are left in 
hexane for the purposes of electrospinning. 
 
 
2.2.2 Sheath- Titania  

The sheath solution is made by mixing 
the following two solutions in a capped vial: 
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(1) 3 mL of ethanol mixed with 3 mL acetic 
acid and 1.5 g TIP and (2) 7.5 mL ethanol and 
0.45 g PVP.  Once the two solutions are 
combined, cap and mix rigorously with 
magnetic stirrer for 1 hour.  If using again 
after allowing the solution to sit for a period of 
time, additional mixing or sonication is 
required.  
 
2.3 Electrospinning Setup and Conditions 
The electrospinning setup, which can be seen 
in Figure 1., follows reference [2], with 
modifications to the working conditions.  
During typical procedures, a voltage of 12 kV 
was applied between the 9cm gap between the 
needle tip and the 2” x 2” aluminum foil 
collector.  The core solution was pumped at a 
rate of 0.6 mL/hr and the sheath solution was 
pumped at a rate of 0.38 mL/hr, both through 
Harvard Apparatus syringe infusion pump 22.  
Once complete, the nanowires were left on the 
collector in air overnight to allow the TIP to 
hydrolyze and then calcined at 400ºC for 30 
minutes, then increased every thirty minutes 
by 50ºC, all the way up to 550ºC, where it was 
held for 4.5 hours.  Once calcined, the samples 
were ready for characterization.   
 
2.4 Characterization 

Transmission electron microscopy 
(TEM) and energy dispersive x-ray 
spectroscopy (EDX) of the PbSe/TiO2 
nanowires was done on a JEOL JEM 2100 
instrument operated at 200 keV using copper 
100/200 square mesh grids (Electron 
Microscopy Sciences).  Electrical testing, as 
seen in references [12, 25], of these 
photovoltaic nanowires was performed on a 
fabricated device, as shown in Figure 4., and 
data was collected using a digital multimeter 
and a Vernier LabPro data collection device 
connected to a PC.  
 
 
 
 

3. Results and Discussion 
3.1. Transmission Electron Microscopy 

Transmission electron microscopy 
(TEM) of the titania nanowires shows that 
they are indeed hollow as seen in Figure 3.  
(a), which shows the titania nanowires with 
lead selenide nanorods deposited on the inner 
walls.  In this micrograph, one may see the 
ends of some of the nanowires, which clearly 
show that they are hollow.  Figure 2.  (a-d) 
show that the nanowires are of a fairly 
uniform outer and inner diameter of about 150 
nm and 140 nm, with a wall thickness of about 
5 nm.  This small wall thickness maximizes 
the surface area of which lead selenide can be 
loaded onto the inner wall of these nanowires 
and lowers the thickness of the titania, which 
will help to reduce electron-hole 
recombination as the hot electrons will be 
transported through the titania to the 
electrodes.  
 
3.2 Energy Dispersive X-ray 
Photospectroscopy 

The energy dispersive x-ray 
spectroscopy (EDX) analysis is shown in 
Figure 3.  (b) and shows both major and 
minor  peaks of: Titanium (Kα=4.5 keV, 
Lα=0.4 keV), Oxygen (Kα=0.5 keV), Lead 
(Lα=10.5 keV, Mα=2.3 keV), and Selenium  
(Kα=11.2 keV, Lα=1.3 keV), suggesting the 
presence of both titania and lead selenide.  
The copper and carbon peaks are due to the 
TEM grid. 

 
3.3 Photovoltaic Testing 
 To demonstrate these nanowires 
photovoltaic application, a device was 
fabricated as seen in the inset of Figure 4.  
These current-voltage (I-V) curves show that 
there is a clear difference between the dark-
current (un-illuminated) and the photo-current 
(illuminated with UV-Vis-IR) samples of the 
nanowires.  It is clear that the sample 
illuminated under UV, visible, and IR 
wavelengths generates the highest current and 



Transportation consumes about 25% of the world’s 
energy, and about 60% of all the oil being produced 
today.  It is now accepted that fossil fuels cannot 
remain the primary mode of energy supply for 
transportation in the future.  This is dictated by the 
fact that the demand is outstripping the available 
supply, and the environmental burden of using fossil 
fuels is not sustainable.  Alternate ideas for 
long-term, sustainable energy use in transportation 
are developing rapidly.  One such idea is the use of 
photovoltaic cells, which uses abundantly available 
energy from the sun and converts that into clean 
‘fuel’ - electricity.  Such sources can be used 
directly in cars and other transportation modes, or 
generate off-grid sources of power that can be stored 
to recharge electric vehicles.  
 
The key technical problem behind the use of solar 
cells is their low efficiency - only 15% of the sun’s 
energy is actually converted to useful electrical 
energy.  This low efficiency makes the current 
generation of solar cells economically infeasible for 
practical applications.  This project is focused on 
structuring lead-selenide nanowires within a titania 
porous matrix to increase the efficiency of a 
photovoltaic cell.  Our unique process for synthesis 
of these nanostructured materials allows more 
efficient separation of the electrons and holes at 
lead-selenide/titania interfaces than current designs, 
and transport of electrons and holes through the 
respective phases without recombination.  Given 
the worldwide demand for alternate energy sources, 
we expect that even a small (2-5%) increase in 
photovoltaic cell efficiency will have a dramatic 
impact in the future.  Our preliminary data in this 
area has not yet shown this target increase in 
efficiency, but we are currently working on 
strategies to improve the materials for photovoltaic 
cells.  
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shows somewhat linear behavior.  Illuminated
under only IR wavelengths, the sample showed a
slightly lower photo-generated current and also
behaved somewhat linearly.  This is expected, as
the lead selenide can produce excitons in both
the IR and visible regions.  When under only
visible wavelengths, however, the sample
generated a very low current, only being slightly
higher than the dark-current.  This could be
expected as lead selenide generates excitons in 
the visible region, but has been shown to produce
them, primarily, at IR wavelengths.  Ultraviolet
photo-currents were not displayed as they were
practically the same as the dark-currents.  These
nanocomposite wires I-V curves are compared to
the photo-generated current of titania electrospun
nanowires with the same configuration, without
the lead selenide.  These samples showed much
lower photo-generated currents and illumination
of any wavelength did not seem to show a
difference from the dark-current curve.  This
shows that the synthesized core/shell nanowires
are indeed photovoltaic, and a photo-generated 
current can be collected from them easily.   

4. Conclusions  
This work has shown that co-electrospinning can
be used as an effective nanocomposite 
photovoltaic simple material synthesis route.
These synthesized PbSe/TiO2 core/sheath
nanowires have shown that photo-generated 
current extraction is easily obtained through a
simple device and under further characterization
and optimization these nanocomposite wires
have potential to have an increased quantum
efficiency and efficient charge-carrier extraction.
Further experimentation could include use of
different collectors for better alignment, as well
as reducing or increasing the dimensions of the
nanowires to obtain an optimum size.  
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Figures 

 
Figure 1.  (a) Photograph showing the setup used and (b) a schematic illustration of the co-axial spinneret 
adapted from reference [2] 
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Figure 2.  TEM micrographs of the PbSe/TiO2-core/sheath nanowires  
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Figure 3.  (a) TEM image showing some of the ends of the hollow TiO2 nanowires with the PbSe 
nanorods within them and (b) EDX analysis of the PbSe/TiO2 nanowires 
 
 
 
 

 
Figure 4.  I-V curves for dark-current and photo-current testing of the electrospun nanocomposite 
compared to electrospun titania (inset shows device setup for testing 
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